Среда, 29.01.2025, 01:43
Приветствую Вас Гость | RSS

   
Главная | Каталог статей | Регистрация | Вход
ORION
   
Форма входа
Меню сайта

Категории раздела
Импульсные БП [2]

ADSENSE

...

Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0



...
Каталог сайтов

Каталог качественных сайтов

Простой и удобный каталог сайтов


...
  • BDL
  • atmaudiovn
  • ut4ucg
  • tolikman888
  • Тэни
  • fizika37
  • lenyavalis74
  • sergej-sibirjak
  • miz2022
  • cexetil
  • vladimirelfimov1952
  • valisleonid18
  • nitro-oc
  • audionosvalvular
  • svvova68
  • qahromonb
  • abbasaliev1971
  • esusloff
  • sargismkrtchyan1962
  • biblicalstudiesru
  • cecfjgpartwilade
  • fiediaxurestand
  • fsem
  • polina2016
  • Teach
  • Пирамидон
  • ridik
  • АлександрСамол
  • osy18108431
  • retron
  • osy1810
  • Milenov
  • Zjama
  • ilfat-imamutdinov
  • urakol
  • Orion_vn6927
  • Alex9673
  • amateur
  • Emon
  • sa1967
  • ananev009
  • niko
  • Akilam
  • Blak_S
  • evg339
  • Любимый
  • rod
  • Supokil
  • DarkAssassian
  • bizmarke
  • n109
  • piligrim59
  • snover
  • Alex
  • Serzh
  • max1111
  • Admin
  • Генадзь
  • myha
  • тамплиер
  • serg
  • aleksm
  • kvpetr53
  • hekoo
  • radist
  • Мой
  • majkl
  • Вадим42
  • Prostoi
  • Гусь
  • Serega15
  • valkor
  • ivan4o47
  • osh73
  • haykaz
  • suh
  • silantiy
  • LadaZ94
  • YES
  • Dgeison
  • el
  • vovka
  • PREVED
  • trifon
  • azer
  • acetilka
  • SergeyNik
  • atl
  • marik4
  • sergey1955
  • stikson0099
  • Sodeystvie
  • viknik
  • supzim
  • 666
  • lawyer
  • ___DMK___
  • Vova1954
  • anton234ff
  • kr580ik80
  • Orion_vn6088
  • ALFA
  • Vano
  • Orion_vn

  • Наша кнопка
    Orion – электроника для любителей и профессионалов

    Главная » Статьи » Блоки питания » Импульсные БП

    Принципы работы импульсных блоков питания PC

    Принципы работы импульсных блоков питания PC

    Назначение и принципы работы блоков питания

    Главное назначение блоков питания - преобразование электрической энергии, поступающей из сети переменного тока, в энергию, пригодную для питания узлов компьютера. Блок питания преобразует сетевое переменное напряжение 220 В, 50 Гц (120 В, 60 Гц) в постоянные напряжения +5 и +12 В, а в некоторых системах и в +3,3 В. Как правило, для питания цифровых схем (системной платы, плат адаптеров и дисковых накопителей) используется напряжение +3,3 или +5 В, а для двигателей (дисководов и различных вентиляторов) -- +12 В. Компьютер работает надежно только в том случае, если значения напряжения в этих цепях не выходят за установленные пределы.

    Сигнальные функции

    Напряжение +12 В предназначено в основном для питания двигателей дисковых накопителей. Источник питания по этой цепи должен обеспечивать большой выходной ток, особенно в компьютерах с множеством отсеков для дисководов. Напряжение 12 В подается также на вентиляторы, которые, как правило, работают постоянно. Обычно двигатель вентилятора потребляет от 100 до 250 мА, но в новых компьютерах это значение ниже 100 мА. В большинстве компьютеров вентиляторы работают от источника +12 В, но в портативных моделях для них используется напряжение +5 В (или даже 3,3 В).
    Блок питания не только вырабатывает необходимое для работы узлов компьютера напряжение, но и приостанавливает функционирование системы до тех пор, пока величина этого напряжения не достигнет значения, достаточного для нормальной работы. Иными словами, блок питания не позволит компьютеру работать при "нештатном" уровне напряжения питания. В каждом блоке питания перед получением разрешения на запуск системы выполняется внутренняя проверка и тестирование выходного напряжения. После этого на системную плату посылается специальный сигнал Power_Good (питание в норме). Если такой сигнал не поступил, компьютер работать не будет. Напряжение сети может оказаться слишком высоким (или низким) для нормальной работы блока питания, и он может перегреться. В любом случае сигнал Power_Good исчезнет, что приведет либо к перезапуску, либо к полному отключению системы. Если ваш компьютер не подает признаков жизни при включении, но вентиляторы и двигатели накопителей работают, то, возможно, отсутствует сигнал Power_Good .
    Столь радикальный способ зашиты был предусмотрен фирмой IBM, исходя из тех соображений, что при перегрузке или перегреве блока питания его выходные напряжения могут выйти за допустимые пределы и работать на таком компьютере будет невозможно.
    Иногда сигнал Power_Good используется для сброса вручную. Он подается на микросхему тактового генератора. Эта микросхема управляет формированием тактовых импульсов и вырабатывает сигнал начальной перезагрузки. Если сигнальную цепь Power_Good заземлить каким-либо переключателем, то генерация тактовых сигналов прекращается и процессор останавливается. После размыкания переключателя вырабатывается кратковременный сигнал начальной установки процессора и разрешается нормальное прохождение сигнала Power_Good, В результате выполняется аппаратная перезагрузка компьютера.
    В компьютерах с формфакторами системной платы (типа ATX, micro-ATX и NLX) предусмотрен другой специальный сигнал. Этот сигнал, называемый PS_ON, может использоваться программой для отключения источника питания (и, таким образом, всего компьютера). Сигнал PS_ON используется операционной системой (например, Windows 9x), которая поддерживает расширенное управление питанием (Advanced Power Management - APM). Когда вы выбираете команду Завершение работы из главного меню, Windows автоматически отключает источник питания компьютера. Система, не обладающая этой особенностью, только отображает сообщение о том, что можно выключить компьютер.

    Сигнал Power_Good

    Уровень напряжения сигнала Power_Good - около +5 В (нормальной считается величина от +3 до +6 В). Он вырабатывается блоком питания после выполнения внутренних проверок и выхода на номинальный режим и обычно появляется через 0,1-0,5 с после включения компьютера. Сигнал подается на системную плату, где микросхемой тактового генератора формируется сигнал начальной установки процессора.
    При отсутствии сигнала Power_Good микросхема тактового генератора постоянно подает на процессор сигнал сброса, не позволяя компьютеру работать при "нештатном" или нестабильном напряжении питания. Когда Power_Good подается на генератор, сигнал сброса отключается и начинается выполнение программы, записанной по адресу: FFFF:0000 (обычно в ROM BIOS).
    Если выходные напряжения блока питания не соответствуют номинальным (например, при снижении напряжения в сети), сигнал Power_Good отключается и процессор автоматически перезапускается. При восстановлении выходных напряжений снова формируется сигнал Power_Good и компьютер начинает работать так, как будто его только что включили. Благодаря быстрому отключению сигнала Power_Good компьютер "не замечает" неполадок в системе питания, поскольку останавливает работу раньше, чем могут появиться ошибки четности и другие проблемы, связанные с неустойчивостью напряжения питания.
    В правильно спроектированном блоке питания выдача сигнала Power_Good задерживается до стабилизации напряжений во всех цепях после включения компьютера. В плохо спроектированных блоках питания (которые устанавливаются во многих дешевых моделях) задержка сигнала Power_Good часто недостаточна и процессор начинает работать слишком рано. Обычно задержка сигнала Power_Good составляет 0,1-0,5 с. В некоторых компьютерах ранняя подача сигнала Power_Good приводит к искажению содержимого CMOS-памяти.
    В некоторых дешевых блоках питания схемы формирования сигнала Power_Good нет вообще и эта цепь просто подключена к источнику напряжения питания на +5 В. Одни системные платы более чувствительны к неправильной подаче сигнала Power_Good, чем другие. Проблемы, связанные с запуском, часто возникают именно из-за недостаточной задержки этого сигнала. Иногда бывает так, что после замены системной платы компьютер перестает нормально запускаться. В такой ситуации довольно трудно разобраться, особенно неопытному пользователю, которому кажется, что причина кроется в новой плате. Но не торопитесь списывать ее в неисправные - часто оказывается, что виноват блок питания: либо он не обеспечивает достаточной мощности для питания новой системной платы, либо не подведен или неправильно вырабатывается сигнал Power_Good. В такой ситуации лучше всего заменить блок питания.

    Мощность блоков питания

    В большинстве совместимых блоков питания выходная мощность колеблется от 150 до 300 Вт. Блоки малой мощности непрактичны, и при желании вы можете заказать блок питания мощностью до 500 Вт, который будет вполне соответствовать вашим потребностям. Блоки питания мощностью более 300 Вт предназначены для тех энтузиастов, которые "набивают" системы Desktop или Tower всевозможными устройствами. Они могут обеспечить работу системной платы с любым набором адаптеров и множеством дисковых накопителей. Однако превысить паспортную мощность блока питания вам не удастся, потому что в компьютере просто не останется места для новых устройств.

    Параметры блоков питания

    Качество блоков питания определяется не только выходной мощностью. Опыт показывает, что, если в одной комнате стоит несколько компьютеров и качество электрической сети невысокое (часто пропадает напряжение, возникают помехи и т.п.), системы с мощными блоками питания работают гораздо лучше систем с дешевыми блоками, устанавливаемыми в некоторых моделях невысокого класса.
    Обратите внимание, гарантирует ли фирма-производитель исправность блока питания (и подключенных к нему систем) при следующих обстоятельствах:

     

    • полном отключении сети на любое время;
    • любом понижении сетевого напряжения;
    • кратковременных выбросах с амплитудой до 2 500 В (!) на входе блока питания (например, при разряде молнии).

    Хорошие блоки питания отличаются высоким качеством изоляции: ток утечки - не более 500 мкА, что бывает важно в том случае, если сетевая розетка плохо заземлена или вовсе не заземлена.
    Как видите, требования, предъявляемые к высококачественным устройствам, очень жесткие. Разумеется, желательно, чтобы ваш блок питания им соответствовал.
    Для оценки качества блока питания используются различные критерии. Многие потребители при покупке компьютера пренебрегают значением источника питания, и поэтому некоторые сборщики персональных компьютеров сокращают расходы на него. Ведь не секрет, что гораздо чаще цена компьютера увеличивается за счет дополнительной памяти или жесткого диска большей емкости, а не более совершенного источника питания.
    При покупке компьютера (или замене блока питания) необходимо обратить внимание на ряд параметров источника питания.

     

    • Среднее время наработки на отказ (среднее время безотказной работы), или среднее время работы до первого отказа (параметр MTBF (Mean Time Between Failures) либо MTTF (Mean Time To Failure)). Это расчетный средний интервал времени в часах, в течение которого ожидается, что источник питания будет функционировать корректно. Среднее время безотказной работы источников питания (например, 100 тыс. часов или больше) как правило определяется не в результате эмпирического испытания, а иначе. Фактически изготовители применяют ранее разработанные стандарты, чтобы вычислить вероятность отказов отдельных компонентов источника питания. При вычислении среднего времени безотказной работы для источников питания часто используются данные о нагрузке блока питания и температуре среды, в которой выполнялись испытания.
    • Диапазон изменения входного напряжения (или рабочий диапазон) , при котором может работать источник питания. Для напряжения 110 В диапазон изменения входного напряжения обычно составляют значения от 90 до 135 В; для входного напряжения 220 В - от 180 до 270 В.
    • Пиковый ток включения . Это самое большое значение тока, обеспечиваемое источником питания в момент его включения; выражается в амперах (А). Чем меньше ток, тем меньший тепловой удар испытывает система.
    • Время (в миллисекундах) удержания выходного напряжения в пределах точно установленных диапазонов напряжений после отключения входного напряжения . Обычно 15-25 мс для современных блоков питания.
    • Переходная характеристика . Количество времени (в микросекундах), которое требуется источнику питания, чтобы установить выходное напряжение в точно определенном диапазоне после резкого изменения тока на выходе. Другими словами, количество времени, требуемое для стабилизации уровней выходных напряжений после включения или выключения системы. Источники питания рассчитаны на равномерное (в определенной степени) потребление тока устройствами компьютера. Когда устройство прекращает потребление мощности (например, в дисководе останавливается вращение дискеты), блок питания может подать слишком высокое выходное напряжение в течение короткого времени. Это явление называется выбросом; переходная характеристика - это время, которое источник питания затрачивает на то, чтобы значение напряжения возвратилось к точно установленному уровню. За последние годы удалось достичь значительных успехов в решении проблем, связанных с явлениями выбросов в источниках питания.
    • Защита от перенапряжений . Это значения (для каждого вывода), при которых срабатывают схемы защиты и источник питания отключает подачу напряжения на конкретный вывод. Значения могут быть выражены в процентах (например, 120% для +3,3 и +5 В) или так же, как и напряжения (например, +4,6 В для вывода +3,3 В; 7,0 В для вывода +5 В).
    • Максимальный ток нагрузки . Это самое большое значение тока (в амперах), который может быть подан на конкретный вывод (без нанесения ущерба системе). Этот параметр указывает конкретное значение силы тока для каждого выходного напряжения. По этим данным вычисляется не только общая мощность, которую может выдать блок питания, но и количество устройств, которые можно подключить к нему.
    • Минимальный ток нагрузки . Самое меньшее значение тока (в амперах), который может быть подан на конкретный вывод (без нанесения ущерба системе). Если ток, потребляемый устройствами на конкретном выводе, меньше указанного значения, то источник питания может быть поврежден или может автоматически отключиться.
    • Стабилизация по нагрузке (или стабилизация напряжения по нагрузке). Когда ток на конкретном выводе увеличивается или уменьшается, слегка изменяется и напряжение. Стабилизация по нагрузке - изменение напряжения для конкретного вывода при перепадах от минимального до максимального тока нагрузки (и наоборот). Значения выражаются в процентах, причем обычно они находятся в пределах от ±1 до ±5% для выводов +3,3, +5 и +12 В.
    • Стабилизация линейного напряжения . Это характеристика, описывающая изменение выходного напряжения в зависимости от изменения входного напряжения (от самого низкого до самого высокого значения). Источник питания должен корректно работать при любом переменном напряжении в диапазоне изменения входного напряжения, причем на выходе оно может изменяться на 1% или меньше.
    • Эффективность (КПД). Отношение мощности, подводимой к блоку питания, к выходной мощности; выражается в процентах. Для современных источников питания значение эффективности обычно равно 65-85%. Оставшиеся 15-35% подводимой мощности преобразуются в тепло в процессе превращения переменного тока в постоянный. Хотя увеличение эффективности (КПД) означает уменьшение количества теплоты внутри компьютера (это всегда хорошо) и более низкие счета за электричество, оно не должно достигаться за счет точности стабилизации независимо от нагрузки на блок питания и других параметров.
    • Пульсация (Ripple) (или пульсация и шум (Ripple and Noise) , или пульсация напряжения (AC Ripple) , или PARD (Periodic and Random Deviation - периодическая и случайная девиация) , или шум, уровень шума) . Среднее значение пиковых (максимальных) отклонений напряжения на выводах источника питания; измеряется в милливольтах (среднеквадратичное значение). Эти колебания напряжения могут быть вызваны переходными процессами внутри источника питания, колебаниями частоты подводимого напряжения и другими случайными помехами.

    Расчет потребляемой мощности

    Чтобы выяснить, можно ли модернизировать компьютер, сначала вычислите мощность, потребляемую его отдельными узлами, а затем определите мощность блока питания. После этого станет ясно, нужно ли заменять блок питания более мощным. К сожалению, эти расчеты не всегда удается выполнить, потому что многие фирмы-производители не сообщают, какую мощность потребляют их изделия.
    Довольно сложно определить этот параметр для устройств с напряжением питания +5 В, включая системную плату и платы адаптеров. Мощность, потребляемая системной платой, зависит от нескольких факторов. Большинство системных плат потребляют ток около 5 А, но будет лучше, если вы как можно точнее вычислите значение тока для вашей конкретной платы. Хорошо, если вам удастся найти точные данные для плат расширения; если их нет, то проявите разумный консерватизм и исходите из максимальной мощности потребления для плат адаптеров, допускаемой стандартом используемой шины.
    Обычно превышение допустимой мощности происходит при заполнении разъемов и установке дополнительных дисководов. Некоторые жесткие диски, CD-ROM, накопители на гибких дисках и другие устройства могут перегрузить блок питания компьютера. Обязательно проверьте, достаточно ли мощности источника +12 В для питания всех дисководов. Особенно это относится к компьютерам с корпусом Tower, в котором предусмотрено много отсеков для накопителей. Проверьте также, не окажется ли перегруженным источник +5 В при установке всех адаптеров, особенно при использовании плат для шин PCI. С одной стороны, лучше перестраховаться, а с другой - имейте в виду, что большинство плат потребляет меньшую мощность, чем максимально допустимая стандартом шины.
    Многие пользователи компьютеров заменяют блок питания только после того, как он сгорит. Конечно, при ограниченном бюджете принцип "не сломался - не трогай" в какой-то мере оправдан. Однако часто блоки ломаются не совсем: они продолжают работать, перио дически отключаясь или подавая на свои разъемы нештатные значения напряжений. Компьютер при этом работает, но его поведение абсолютно непредсказуемо. Вы будете искать причину в программе, хотя действительным виновником является перегруженный блок питания.
    Опытные пользователи персональных компьютеров предпочитают не применять метод расчета мощности. Они просто покупают компьютеры с высококачественным источником питания, рассчитанным на 300 или 350 Вт (или устанавливают такой источник самостоятельно) и затем при модернизации системы не задумываются о потребляемой мощности. Если вы не планируете собрать систему с шестью дисководами SCSI и дюжиной других внешних устройств, то, вероятно, не превысите возможности такого блока питания.

    Проблемы, связанные с блоками питания

    Чтобы найти неисправности в блоке питания, не стоит его вскрывать и пытаться ремонтировать, поскольку через него проходят высокие напряжения. Подобные работы должны выполнять только специалисты, знающие толк в этом деле.
    О неисправности блока питания можно судить по многим признакам. Например, сообщения об ошибках четности часто свидетельствуют о неполадках в блоке питания. Это может показаться странным, поскольку подобные сообщения должны появляться при неисправностях ОЗУ. Однако связь в данном случае очевидна: микросхемы памяти получают напряжение от блока питания, и, если это напряжение не соответствует определенным требованиям, происходят сбои. Нужен некоторый опыт, чтобы достоверно определить, когда причина этих сбоев состоит в неправильном функционировании самих микросхем памяти, а когда скрыта в блоке питания.
    Ниже перечислены проблемы, возникающие при неисправности блока питания.

    • Любые ошибки и зависания при включении компьютера.
    • Спонтанная перезагрузка или периодические зависания во время обычной работы.
    • Хаотичные ошибки четности или другие ошибки памяти.
    • Одновременная остановка жесткого диска и вентилятора (нет напряжения +12 В).
    • Перегрев компьютера из-за выхода из строя вентилятора.
    • Перезапуск компьютера из-за малейшего снижения напряжения в сети.
    • Удары электрическим током во время прикосновения к корпусу компьютера или к разъемам.
    • Небольшие статические разряды, нарушающие работу системы.

    Практически любые сбои в работе компьютера могут быть вызваны неисправностью блока питания. Есть, конечно, и более очевидные признаки, например:

    • компьютер вообще не работает (не работает вентилятор, на дисплее нет курсора);
    • появился дым;
    • на распределительном щитке сгорел сетевой предохранитель.

    Перегрузка блока питания

    Недостаточно мощный блок питания может ограничить возможности расширения компьютера. Многие компьютеры выпускаются с довольно мощными блоками питания, которые рассчитаны на то, что в будущем в систему будут установлены новые (дополнительные) узлы. Однако в некоторых компьютерах блоки питания имеют настолько низкую мощность, что попытки установить в них мало-мальски приемлемый набор дополнительных модулей заранее обречены на провал.
    Паспортное значение мощности, указанное на блоке питания, не должно вводить вас в заблуждение. Не все блоки питания, например на 200 Вт, одинаковы. Дешевые блоки питания наверняка могут развивать мощность, указанную в паспорте, а как обстоят дела с помехами и качеством напряжений в цепях питания? Одни блоки питания с трудом "вытягивают" свои параметры, а другие работают с большим запасом. Многим дешевым блокам питания свойственны нестабильные выходные напряжения, в них также присутствуют шумы и помехи, что может привести к многочисленным проблемам. Кроме того, они обычно сильно нагреваются сами и нагревают все остальные узлы. Большинство специалистов рекомендуют заменять установленные в компьютерах блоки питания более мощными. Поскольку конструкции этих блоков стандартизованы, найти замену для большинства систем не составит особого труда.

    Ремонт блоков питания

    По-настоящему ремонтом блока питания занимаются редко - дешевле заменить его новым. Дефектный блок питания обычно выбрасывают, если, конечно, он не является высококачественным или дорогим. В последнем случае лучше отправить его на фирму, специализирующуюся на ремонте блоков питания и других компонентов.
    Если у вас есть опыт работы с высокими напряжениями, то вы сможете отремонтировать блок питания собственными силами. Правда, для этого понадобится его открыть, но делать это не рекомендуется. Большинство фирм-производителей стараются воспрепятствовать "проникновению" в блок питания, применяя при сборке специальные винты типа Torx. В то же время фирмы, производящие инструменты, выпускают комплекты отверток, которыми можно отвернуть винты с защитой. Некоторые блоки питания собраны на заклепках, и при вскрытии блока их приходится высверливать. Учтите, что производители создают все эти препятствия с одной целью - защитить неопытных людей от высокого напряжения. Считайте, что вы предупреждены!
    В большинстве блоков питания для защиты от перегрузки установлен внутренний плавкий предохранитель. Если он перегорит, блок питания работать не будет. Открыв корпус, его можно заменить, но в большинстве случаев замена ничего не даст - если не устранена основная неисправность, перегорит и новый предохранитель. В этом случае лучше всего отправить блок питания в ремонтную мастерскую.
    Источники питания персональных компьютеров имеют встроенные регулировки напряжения, которое калибруется и устанавливается при изготовлении. Через какое-то время параметры некоторых узлов (компонентов) могут измениться, тогда изменятся и выходные напряжения. Если дело обстоит именно так, можно с помощью средств настройки снова установить правильные значения напряжений.
    Несколько средств корректировки напряжений находятся внутри источника питания, обычно они представляют собой переменные резисторы.
    Вы также должны найти для каждого напряжения свой подстроечный резистор. Это можно установить эмпирическим путем. Вы можете отметить текущие позиции всех резисторов, а затем измерять выходное напряжение, одновременно (по очереди) слегка изменяя положение органов управления каждого подстроечного устройства, пока не увидите изменение напряжения. Если вы изменяете положение органов управления подстроечного устройства, а наблюдаемое вами напряжение не изменяется, восстановите положение в исходную позицию. (Для этого пригодится метка, которую вы поставили перед началом эксперимента.) С помощью этого метода можно скорректировать величину каждого напряжения, установив его значение равным стандартному, т.е. 3,3, 5 или 12 В.



    Источник: http://blok-pitaniya.2vs2.ru/princip_raboti.php
    Категория: Импульсные БП | Добавил: Orion_vn (18.07.2011)
    Просмотров: 13167 | Теги: нагрузка, блок питания, micro-ATX, мощность, ATX, напряжение, ибп, Ток, импульсный | Рейтинг: 5.0/3
    Всего комментариев: 0
    Добавлять комментарии могут только зарегистрированные пользователи.
    [ Регистрация | Вход ]
    <
    Яндекс цитирования
    radionet
      Яндекс.Метрика
    CY-PR.com
    Copyright by Orion © 2025-2013